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THE STATE-OF-THE-ART

Band Split RNN
2023 | SDR: 9.0
Wave-U-Net Western Pop Music
2018 | SDR: 3.2 MUSDB18
Open UnMix
2019 | SDR: 5.3
Hybrid Demucs
—— © spotify Google

Spleeter
2020 | SDR: 5.9
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RECORDINGS FROM LIVE CONCERTS (CARNATIC CONCERT)

* Live recordings lacks acoustic shielding

* Microphone intended to pick specific
source picks up the other sources as well
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MSS VS INTERFERENCE REDUCTION

* Interference reduction: Special type of source separation

* Aim: Clean microphone recordings
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Music Source Separation System

Interfered recordings

Interference Reduction System

Clean Sources
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* No neural network-based techniques proposed, due to dataset?

+ DSP Algorithms: KAMIR! (Kernel Additive Modelling for Interference
Reduction) - the state-of-the-art [2015]

LT Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for interference reduction in multi-channel music recordings,” in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584-588
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“ No neural network-based techniques proposed, due to dataset?

+ DSP Algorithms: KAMIR! (Kernel Additive Modelling for Interference
Reduction) - the state-of-the-art [2015]

+ MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA? are the
advancement of KAMIR

LT Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for interference reduction in multi-channel music recordings,” in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584-588

°Di Carlo, Diego, Antoine Liutkus, and Ken Dégquemel. "Interference reduction on full-length live recordings.” 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018
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CONTRIBUTIONS

* Learning free Optimisation Algorithm

* Convolutional Autoencoders (CAEs)
“ Truncated UNet (t-UNet)
+ Dilated full Wave-U-Net (dfUNet) with Graph Attentions
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+ Each source has at least one dedicated
microphones.
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+ Each source has at least one dedicated
microphones.

* At least a single source is dominant in
its dedicated microphone.
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INTERFERENCE AS NOISE

Treating interference as a noise,

x(t) = s(t) + n(r)

Microphone recording

frbfnttf st

Dominant Source

it it oot

Other Sources (Modelled as noise)

e PM“‘ : W 1 \M b
r'ﬂmu W mq‘“l ,
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SHORTCOMINGS OF THE APPROACH

* Poor generalisability
* Thus, for each source there should be dedicated trained CAEs

+ Phase information issues
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Observed Signal

x(t) = Ays1(®) + s, (1) + ...+ A5,.(F)
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XZ(t) — /121S1(t) —+ /122S2(t) + ..+ ﬂznsn(t)

xk(t) — /lklsl(t) + /1k2S2(t) + ..+ /lann(t)

X=AS$

Microphone Mixing
Recordings Matrix

X = [x;(8), x,(2), . . .,

S = [51(2), 5,(¢)
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MATHEMATICAL FORMULATION

For k microphones and n sources,
X1(1) = Ap181(8) + A1285(8) + .. + 4,,5,(¢)

XZ(t) — /121S1(t) —+ /122S2(t) + ..+ ﬂznsn(t)

xk(t) — /Iklsl(t) + /1k2S2(t) + ..+ /lann(t)

X=AS$

Microphone Mixing Source
Recordings Matrix Signals

X = [x,(8), %,(D), ..., x, (D!

S = [5,(0), $,(0), ..., s,

Similarly for mixture signal,

m(t) = i Bis{t) =b'S
1=0
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ISSUES: WHAT'S NEXT?

Equations: X = ASand m = b'S
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ISSUES: WHAT'S NEXT?

Equations: X = ASand m = b'S

+ X = AS§ is an over-determined or over-constrained problem

* No unique solution, multiple solution exists

24
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Equations: X = ASand m = b'S
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subject to constraints:
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ALTERNATE MINIMISATION SOLUTION

* Non convex problem, global minima does not exist
 Alternate minimisation approach

 Derived the update rule for A, S and b.
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* Non convex problem, global minima does not exist
 Alternate minimisation approach

 Derived the update rule for A, S and b.

Update Rules:

A = (XSSTY(SST + nD)~!
S=A'A+bbDbm + ATX)
b= (SST+nh)~1(Sm")
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* Non convex problem, global minima does not exist

 Alternate minimisation approach

. Inputs: X € R**! and m € R’

 Derived the update rule for A, S and b. AR A4~ 1
. Initialize: S + X

. Initialize: b + [1,1,...1]7 € R

Update Rules: . while || X — AS||* + ||m — b" S||* > edo
. A+ (XSST)(SST +qI)~?
A = (XSSTY(SST + nD)~! . A« projection(A)
. S ATA+ ) (m + AT X)
S=A"A+bb") ' (bm + A'X) 9: b (SST + )7 (SmT)

10: end while

b= (SST+nD)~'(Sm")



OVERALL PROCEDURE

27



OVERALL PROCEDURE

.

x(t) € R

27



OVERALL PROCEDURE .

Institute of
Technology
Mandi




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS




OVERALL PROCEDURE .

Institute of
Technology
Mandi




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS | 10 BLOCKS




OVERALL PROCEDURE .

Institute of
Technology
Mandi

BLOCKS BLOCKS




DATASET 1: FOR TESTING (LINEAR MIXTURES - LM)

* Linear mixtures as per X = AS
* MUSDB18HQ training set: Artificially bleeded with randomly generated A
~ Diagonals of A are in range 0.6 to 1

~ Off diagonals of A are in range 0 to 0.4
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KAMIR Optimization KAMIR Optimization

Average SDR across sources Time taken in seconds



RESULTS

X =AS
True A Predicted A KAMIR A

0.098 0.099 | 0. 1.071 0.1 0.12

0.122 paRiram 0.11 | 0.173

0.098 0.099 0.127 | 0.097

Interference Matrix A



TEST ON LIVE RECORDINGS AND LIMITATIONS

* Linearity: Mixtures in real world follows non-linear mixing.
* High computation time.

+ Basic model.
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REPLACING WITH NEURAL NETWORK
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REPLACING WITH NEURAL NETWORK

* Why?
+ Datasets? A =

* Generalisability?

A«ll 2112 e oo
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REPLACING WITH NEURAL NETWORK

“* Why?

+ Datasets? A =

* Generalisability?

X=AS
/111 /112 o /11N xl(t) Sl(t)
/121 /122 co /12N X — .X2(t) S — SZ(t)
/1K1 /IKZ .o AKN XK(t) SN(t)

The interference reduced sources can be estimated by,
S=A'X

Where T is the pseudo inverse of A.
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DATASET 2: FOR TESTING (REAL MIXTURES - CM)

ACOUSTICALLY TREATED RANDOM ROOM

https:/ /images.app.goo.gl/ oMMM]JN7V]J4inwNnqg8 https:/ /images.app.goo.gl/ 65HCSCiKP55FfWVMA
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DATASET 2: FOR TESTING (REAL MIXTURES - CM)

- Stimulated artificial room using pyroomacoustics®

" Dataset created with room impulse response, time delays, reverberations.

"~ Resembles more natural with live recordings. Same set of LM source set utilised

SScheibler, Robin, Eric Bezzam, and Ivan Dokmanic. "Pyroomacoustics: A python package for audio room simulation and array processing
algorithms.” 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018.
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MUSDB Linear Mixtures (LM)
MUSDBR Realistic Mixtures (CM)
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CONCLUSION OF THE APPROACHES
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CONCLUSION OF THE APPROACHES

* Proposed two neural networks for interference reduction: CAEs and t-UNet,
both performing better than KAMIR

* CAEs has difficulties in generalising and works in TF domain where t-UNet
reduces interference directly by learning interference matrix.

* t-UNet outperforms all the models in-terms of SDR and computationally
faster
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* tUNet built with the mathematical approximation

of the problem as X = AS which is still linear!

* Initial evaluations of the live recordings reveals the

t-UNet is not effective.
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OE

/ x(t) = A151(1) + s,(1) + ... + 4,5,(7)
s, (7) W

* tUNet built with the mathematical approximation

of the problem as X = AS which is still linear!

* Initial evaluations of the live recordings reveals the

t-UNet is not effective.

Where f(.), g(.), and A(.) are unknown
functions
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GRAPH ATTENTIONS IN AUDIO DOMAIN

" Treating each audio as a node

" Each vertices strength corresponds to the interference strength among recordings
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GRAPH ATTENTIONS IN AUDIO DOMAIN

" Treating each audio as a node

" Each vertices strength corresponds to the interference strength among recordings
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HOW DOES IT SOUND?
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MUSIC SOURCE SEPARATION FOR
THE LIVE CARNATIC DATASEI




Source 1 output Source K-1 output

Mixture audio

1D Convoldfion, Size 15 1D Convolution, Size 5 TWO mO d EIS:

Crop and concat

Downsanping [ Upsamping 1. Trained with MUSDB18 dataset
2. Trained with Live recorded Saraga dataset

Downsampling block 2 Upsamphng block 2
i Crop and concat

Downsampling block L Upsamphng block L

Crop and concat [
|—$ 1D Convolution, Size 15

Stoller, Daniel, Sebastian Ewert, and Simon Dixon. "Wave-u-net: A multi-scale neural network for end-to-end audio
source separation.” arXiv preprint arXiv:1806.03185 (2018).



RESULTS FOR MUSDB18HQ & LIVE RECORDINGS

Wave-U-Net with MUSDB18HQ dataset,

SDR

2.32

0.96

1.72

2.03

Wave-U-Net with Sagraga dataset,

SDR

NA

-0.19

1.16

To be filled
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CONCLUSION

"~ Proposed IR models improves MSS performance

" Proposed IR models better than SOTA KAMIR in terms of SDR and Faster

Average 1320.8 4.8 2.19 4.2

Table: Time taken in seconds for 200 test tracks of 10 seconds
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FUTURE DIRECTIONS

" Informed Source Separation: Build end-to-end IR-MSS systems.

" DSP Techniques for IR: Beamformers, Direction of Arrival Estimation, etc.
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PUBLICATIONS

* Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference Reduction in Multi-

Track Recordings," 2023 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), New Paltz, NY, USA, 2023, pp. 1-5.

+ Rajesh R and Padmanabhan Rajan, “Interference reduction in live recordings”

communicating to Transactions in Audio, Speech, and Language Processing (TASLP) 2024
(under preparation)
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