

RAJESH R (S21005) · SYNOPSIS SEMINAR · 08 FEBRUARY 2024

INTERFERENCE REDUCTION IN LIVE RECORDINGS FOR MUSIC SOURCE SEPARATION

How many instrument sources you can hear?

How many instrument sources you can hear?

How many instrument sources you can hear?

MUSIC PRODUCTION

Music remixing: DAW

https://www.seekpng.com/ima/u2q8r5y3e6y3r5u2/

Music

(Vocal(s), Bass, Drums and Other)

Music Production & Remixing

Music Production & Remixing

Music Production & Remixing

Automatic Music Tagging & Classification

Music Production & Remixing

Automatic Music Tagging & Classification

Audio Restoration

Music Production & Remixing

Automatic Music Tagging & Classification

Education & Learning

Audio Restoration

Music Production & Remixing

Automatic Music Tagging & Classification

Education & Learning

Audio Restoration

Music Transcription

Music Production & Remixing

Automatic Music Tagging & Classification

Education & Learning

Audio Restoration

Music Transcription

Automatic Accompaniment Generation

Music Production & Remixing

Automatic Music Tagging & Classification

Education & Learning

Audio Restoration

Music Transcription

Automatic Accompaniment Generation

Health & Wellbeing

Music Production & Remixing

Automatic Music Tagging & Classification

Education & Learning

Audio Restoration

Music Transcription

Automatic Accompaniment Generation

Health & Wellbeing

Music Information Retrieval

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

Source to Distortion Ratio

$$SDR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf} + e_{noise} + e_{arti}||^2}$$

Source to Distortion Ratio

$$SDR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf} + e_{noise} + e_{arti}||^2}$$

Source to Artifact Ratio

$$SAR = 10log_{10} \frac{||S_{target} + e_{noise} + e_{arti}||^2}{||e_{interf}||^2}$$

Source to Distortion Ratio

$$SDR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf} + e_{noise} + e_{arti}||^2}$$

Source to Artifact Ratio

$$SAR = 10log_{10} \frac{||S_{target} + e_{noise} + e_{arti}||^2}{||e_{interf}||^2}$$

Source to Interference Ratio

$$SIR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf}||^2}$$

Source to Distortion Ratio

$$SDR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf} + e_{noise} + e_{arti}||^2}$$

Source to Artifact Ratio

$$SAR = 10log_{10} \frac{||S_{target} + e_{noise} + e_{arti}||^2}{||e_{interf}||^2}$$

Scale Invariant Source to Distortion Ratio

$$SI - SDR = 10log_{10} \frac{\|s\|^2}{\|s - \hat{s}\|^2} = 10log_{10} \frac{\|\alpha s\|^2}{\|\alpha s - \hat{s}\|^2}$$

$$\alpha = \frac{\hat{s}^T s}{\|s\|^2}$$

Source to Interference Ratio

$$SIR = 10log_{10} \frac{||S_{target}||^2}{||e_{interf}||^2}$$

THE STATE-OF-THE-ART

Wave-U-Net 2018 | SDR: 3.2

Hybrid Demucs 2023 | SDR: 9.0 Band Split RNN

2023 | SDR: 9.0

Open UnMix

2019 | SDR: 5.3

Spleeter
2020 | SDR: 5.9

Western Pop Music MUSDB18

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

- * Live recordings lacks acoustic shielding
- * Microphone intended to pick specific source picks up the other sources as well

PRIMARY OBJECTIVE

Interference Reduction System

THE GOAL

MSS VS INTERFERENCE REDUCTION

- * Interference reduction: Special type of source separation
- * Aim: Clean microphone recordings

INTERFERENCE REDUCTION

* No neural network-based techniques proposed, due to dataset?

- * No neural network-based techniques proposed, due to dataset?
- * DSP Algorithms: **KAMIR**¹ (Kernel Additive Modelling for Interference Reduction) the state-of-the-art [2015]

¹T. Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, "Kernel additive modeling for interference reduction in multi-channel music recordings," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584–588

- * No neural network-based techniques proposed, due to dataset?
- * DSP Algorithms: **KAMIR**¹ (Kernel Additive Modelling for Interference Reduction) the state-of-the-art [2015]
- MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA² are the advancement of KAMIR

¹T. Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, "Kernel additive modeling for interference reduction in multi-channel music recordings," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584–588

²Di Carlo, Diego, Antoine Liutkus, and Ken Déguemel. "Interference reduction on full-length live recordings." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018

* Learning free Optimisation Algorithm

- * Learning free Optimisation Algorithm
- * Convolutional Autoencoders (CAEs)

- * Learning free Optimisation Algorithm
- * Convolutional Autoencoders (CAEs)
- * Truncated UNet (t-UNet)

- * Learning free Optimisation Algorithm
- * Convolutional Autoencoders (CAEs)
- * Truncated UNet (t-UNet)
- * Dilated full Wave-U-Net (dfUNet) with Graph Attentions

ASSUMPTIONS

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

ASSUMPTIONS

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

* Each source has at least one dedicated microphones.

ASSUMPTIONS

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

- * Each source has at least one dedicated microphones.
- * At least a single source is dominant in its dedicated microphone.

INTERFERENCE AS NOISE

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Microphone recording

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Other Sources (Modelled as noise)

THE CONVOLUTIONAL AUTOENCODER (CAE)

THE CONVOLUTIONAL AUTOENCODER (CAE)

Microphone Recordings

THE CONVOLUTIONAL AUTOENCODER (CAE)

Microphone Recordings

Estimated Sources

SHORTCOMINGS OF THE APPROACH

- * Poor generalisability
- * Thus, for each source there should be dedicated trained CAEs
- * Phase information issues

HIDDEN INFORMATION

We have this information !!!

For k microphones and n sources,

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$

Microphone Recordings

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$

Microphone Recordings Mixing

Matrix

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11} s_1(t) + \lambda_{12} s_2(t) + \dots + \lambda_{1n} s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$
 \uparrow
Microphone Mixing Source Recordings Matrix Signals

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

•

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$
 \uparrow

Microphone Mixing Source Recordings Matrix Signals

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

Similarly for mixture signal,

$$m(t) = \sum_{i=0}^{\infty} \beta_i s_i(t) = b^T S$$

ISSUES: WHAT'S NEXT?

Equations: $X = \Lambda S$ and $m = b^T S$

ISSUES: WHAT'S NEXT?

Equations: $X = \Lambda S$ and $m = b^T S$

* $X = \Lambda S$ is an over-determined or over-constrained problem

ISSUES: WHAT'S NEXT?

Equations: $X = \Lambda S$ and $m = b^T S$

- * $X = \Lambda S$ is an over-determined or over-constrained problem
- * No unique solution, multiple solution exists

Equations: $X = \Lambda S$ and $m = b^T S$

Equations: $X = \Lambda S$ and $m = b^T S$

With guidance of Dr. Siddhartha Sarma

Equations: $X = \Lambda S$ and $m = b^T S$

Problem statement: minimise $||X - \Lambda S||^2 + ||m - b^T S||^2$ with respect to Λ , S and b subject to constraints:

- 1. $\Lambda \neq I$
- 2. $\lambda_{ii} > \lambda_{ii}$
- 3. $\gamma_1 \leq \lambda_{ij} \leq \gamma_2, \forall i \neq j$

Equations: $X = \Lambda S$ and $m = b^T S$

Problem statement: minimise $||X - \Lambda S||^2 + ||m - b^T S||^2$ with respect to Λ , S and b subject to constraints:

- 1. $\Lambda \neq I$
- 2. $\lambda_{ii} > \lambda_{ij}$
- 3. $\gamma_1 \leq \lambda_{ij} \leq \gamma_2, \forall i \neq j$

ALTERNATE MINIMISATION SOLUTION

- Non convex problem, global minima does not exist
- Alternate minimisation approach
- Derived the update rule for Λ , S and b.

ALTERNATE MINIMISATION SOLUTION

- Non convex problem, global minima does not exist
- Alternate minimisation approach
- Derived the update rule for Λ , S and b.

Update Rules:

$$\Lambda = (XSS^T)(SS^T + \eta I)^{-1}$$

$$S = (\Lambda^T \Lambda + bb^T)^{-1}(bm + \Lambda^T X)$$

$$b = (SS^T + \eta I)^{-1}(Sm^T)$$

ALTERNATE MINIMISATION SOLUTION

- Non convex problem, global minima does not exist
- Alternate minimisation approach
- Derived the update rule for Λ , S and b.

Update Rules:

$$\Lambda = (XSS^T)(SS^T + \eta I)^{-1}$$

$$S = (\Lambda^T \Lambda + bb^T)^{-1}(bm + \Lambda^T X)$$

$$b = (SS^T + \eta I)^{-1}(Sm^T)$$

```
1: Inputs: X \in \mathbb{R}^{k \times l} and m \in \mathbb{R}^{l}

2: Initialize: \Lambda \leftarrow I

3: Initialize: S \leftarrow X

4: Initialize: b \leftarrow [1, 1, ...1]^T \in \mathbb{R}^l

5: while ||X - \Lambda S||^2 + ||m - b^T S||^2 \ge \epsilon do

6: \Lambda \leftarrow (XSS^T)(SS^T + \eta I)^{-1}

7: \Lambda \leftarrow projection(\Lambda)

8: S \leftarrow (\Lambda^T \Lambda + bb^T)^{-1}(bm + \Lambda^T X)

9: b \leftarrow (SS^T + \eta I)^{-1}(Sm^T)

10: end while
```


STACK

$$X \in \mathbb{R}^{k \times l}$$

DATASET 1: FOR TESTING (LINEAR MIXTURES - LM)

- Linear mixtures as per $X = \Lambda S$
- lacktriangle MUSDB18HQ training set: Artificially bleeded with randomly generated Λ
- ightharpoonup Diagonals of Λ are in range 0.6 to 1
- lack Off diagonals of Λ are in range 0 to 0.4

Average SDR across sources

Average SDR across sources

Time taken in seconds

$$X = \Lambda S$$

True A				Predicted A					KAMIRΛ				
1	0.1	0.1	0.1		1	0.098	0.099	0.099		1.071	0.101	0.1	0.12
0.1	1	0.1	0.1		0.094	1	0.092	0.098		0.122	1.07	0.11	0.173
0.1	0.1	1	0.1		0.094	0.098	1	0.099		0.284	0.19	1.558	0.564
0.1	0.1	0.1	1		0.094	0.098	0.099	1		0.127	0.097	0.104	1.235

Interference Matrix A

TEST ON LIVE RECORDINGS AND LIMITATIONS

- * Linearity: Mixtures in real world follows non-linear mixing.
- * High computation time.
- * Basic model.

* Why?

- * Why?
- * Datasets?

- * Why?
- * Datasets?
- * Generalisability?

- * Datasets?
- * Generalisability?

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1N} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2N} \\ \vdots & & \vdots & \\ \lambda_{K1} & \lambda_{K2} & \dots & \lambda_{KN} \end{pmatrix} \quad X = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_K(t) \end{pmatrix} \quad S = \begin{pmatrix} s_1(t) \\ s_2(t) \\ \vdots \\ s_N(t) \end{pmatrix}$$

 $X = \Lambda S$

- * Why?
- * Datasets?
- * Generalisability?

$$X = \Lambda S$$

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1N} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2N} \\ \vdots & & \vdots & \\ \lambda_{K1} & \lambda_{K2} & \dots & \lambda_{KN} \end{pmatrix} \quad X = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_K(t) \end{pmatrix} \quad S = \begin{pmatrix} s_1(t) \\ s_2(t) \\ \vdots \\ s_N(t) \end{pmatrix}$$

The interference reduced sources can be estimated by,

$$\hat{S} = \Lambda^{\dagger} X$$

Where \dagger is the pseudo inverse of Λ .

TRUNCATED UNET ARCHITECTURE

$$X = \Lambda S$$

DATASET 2: FOR TESTING (REAL MIXTURES - CM)

ACOUSTICALLY TREATED

https://images.app.goo.gl/oMMMJN7VJ4inwNnq8

RANDOM ROOM

https://images.app.goo.gl/65HCSCiKP55FfWVMA

DATASET 2: FOR TESTING (REAL MIXTURES - CM)

- Stimulated artificial room using pyroomacoustics³
- Dataset created with room impulse response, time delays, reverberations.
- Resembles more natural with live recordings. Same set of LM source set utilised

³Scheibler, Robin, Eric Bezzam, and Ivan Dokmanić. "Pyroomacoustics: A python package for audio room simulation and array processing algorithms." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018.

Linear Mixtures

KAMIR	MUSDB	Linear Mixtures (LM)			
CAEs	MUSDBR	Realistic Mixtures (CM)			
t-UNet	MUSDBR-F	LM finetuned with CM			

Spectrograms of Vocal Source

Spectrograms of Vocal Source

Spectrograms of Vocal Source

Spectrograms of Vocal Source

Difference of Frobenius norm of the true Λ with the predicted $\hat{\Lambda}$.

Proposed two neural networks for interference reduction: CAEs and t-UNet,
 both performing better than KAMIR

- Proposed two neural networks for interference reduction: CAEs and t-UNet,
 both performing better than KAMIR
- * CAEs has difficulties in generalising and works in TF domain where t-UNet reduces interference directly by learning interference matrix.

- Proposed two neural networks for interference reduction: CAEs and t-UNet,
 both performing better than KAMIR
- * CAEs has difficulties in generalising and works in TF domain where t-UNet reduces interference directly by learning interference matrix.
- * t-UNet outperforms all the models in-terms of SDR and computationally faster

* tUNet built with the mathematical approximation of the problem as $X = \Lambda S$ which is still **linear!**

- * tUNet built with the mathematical approximation of the problem as $X = \Lambda S$ which is still **linear!**
- * Initial evaluations of the live recordings reveals the t-UNet is not effective.

- * tUNet built with the mathematical approximation of the problem as $X = \Lambda S$ which is still **linear!**
- * Initial evaluations of the live recordings reveals the t-UNet is not effective.

For k microphones and n sources,

$$x_1(t) = f(s_1(t), s_2(t), \dots, s_n(t))$$

 $x_2(t) = g(s_1(t), s_2(t), \dots, s_n(t))$
 \vdots
 $x_k(t) = h(s_1(t), s_2(t), \dots, s_n(t))$

Where f(.), g(.), and h(.) are unknown functions

DILATED FULL WAVE U NET ARCHITECTURE

GRAPH ATTENTIONS IN AUDIO DOMAIN

- Treating each audio as a node
- Each vertices strength corresponds to the interference strength among recordings

GRAPH ATTENTIONS IN AUDIO DOMAIN

- Treating each audio as a node
- Each vertices strength corresponds to the interference strength among recordings

GRAPH ATTENTIONS IN AUDIO DOMAIN

- Treating each audio as a node
- Each vertices strength corresponds to the interference strength among recordings

GRAPH ATTENTIONS IN AUDIO DOMAIN

- Treating each audio as a node
- Each vertices strength corresponds to the interference strength among recordings

DILATED FULL WAVE U NET WITH GRAPH ATTENTIONS

RESULTS

Linear Mixtures

Realistic Mixtures

TEST ON LIVE RECORDINGS (OUT OF DOMAIN SAMPLES)

Interference Reduction Quality

Audio Quality

Stems	IRQ				AQ			
	Mean		Median		Mean		Median	
	KAMIR	dfUNET	KAMIR	dfUNET	KAMIR	dfUNET	KAMIR	dfUNET
Vocal	3.71	3.41	4	3.5	3.71	3.25	4	3
Mridangam	3.73	3.53	4	4	3.45	3.28	3	3
Violin	3.68	3.45	4	3	3.86	3.08	4	3

Listening Test Results: 44 Participants

MUSIC SOURCE SEPARATION FOR THE LIVE CARNATIC DATASET

TRAINING MSS: WAVE-U-NET MODEL

Two models:

- 1. Trained with MUSDB18 dataset
- 2. Trained with Live recorded Saraga dataset

Stoller, Daniel, Sebastian Ewert, and Simon Dixon. "Wave-u-net: A multi-scale neural network for end-to-end audio source separation." *arXiv* preprint arXiv:1806.03185 (2018).

RESULTS FOR MUSDB18HQ & LIVE RECORDINGS

Wave-U-Net with MUSDB18HQ dataset,

	Clean	Interference	CAE Cleaned	t-UNet Cleaned
SDR	2.32	0.96	1.72	2.03

Wave-U-Net with Sagraga dataset,

Clean		Interference (4 source)	Interference (4 source)	dfUNet Cleaned
SDR	NA	-0.19	1.16	To be filled

CONCLUSION

- Proposed IR models improves MSS performance
- Proposed IR models better than SOTA KAMIR in terms of SDR and Faster

	KAMIR	CAEs	tUNet	dfUNet
Average	1320.8	4.8	2.19	4.2

Table: Time taken in seconds for 200 test tracks of 10 seconds

FUTURE DIRECTIONS

- Informed Source Separation: Build end-to-end IR-MSS systems.
- DSP Techniques for IR: Beamformers, Direction of Arrival Estimation, etc.

PUBLICATIONS

- * Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference Reduction in Multi-Track Recordings," 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2023, pp. 1-5.
- * Rajesh R and Padmanabhan Rajan, "Interference reduction in live recordings" communicating to *Transactions in Audio, Speech, and Language Processing (TASLP)* 2024 (under preparation)

THANKS FOR YOUR TIME AND ATTENTION