
INTERFERENCE REDUCTION IN LIVE 
RECORDINGS FOR MUSIC SOURCE SEPARATION

RAJESH R (S21005)  SYNOPSIS SEMINAR  08 FEBRUARY 2024· ·



MUSIC

2



MUSIC

How many instrument sources you can hear?

2



MUSIC

How many instrument sources you can hear?

2



MUSIC

How many instrument sources you can hear?

2

5+



MUSIC PRODUCTION

3

Music remixing: DAW

https://www.seekpng.com/ima/u2q8r5y3e6y3r5u2/

Mixing

Music
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WHY MUSIC SOURCE SEPARATION?

5

APPLICATIONS

Music Production & Remixing

Audio Restoration

Music Transcription

Speech Enhancement

Automatic Music Tagging & Classification

Music Information Retrieval

Education & Learning

Health & Wellbeing
Automatic Accompaniment Generation
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Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: 
An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.
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Source to Distortion Ratio

SDR = 10log10
∥Starget∥2

∥einterf + enoise + earti∥2

Source to Artifact Ratio

SAR = 10log10
∥Starget + enoise + earti∥2

∥einterf∥2

Source to Interference Ratio

SIR = 10log10
∥Starget∥2

∥einterf∥2

Scale Invariant Source to Distortion Ratio

SI − SDR = 10log10
∥s∥2

∥s − ̂s∥2
= 10log10

∥αs∥2

∥αs − ̂s∥2

α =
̂sTs

∥s∥2
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Wave-U-Net

Hybrid Demucs

Band Split RNN
2023 | SDR: 9.0

2018 | SDR: 3.2

2023 | SDR: 9.0

Western Pop Music
MUSDB18

Open UnMix
2019 | SDR: 5.3

Spleeter
2020 | SDR: 5.9
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Mridangam
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❖ Live recordings lacks acoustic shielding

❖ Microphone intended to pick specific 
source picks up the other sources as wellhttps://images.app.goo.gl/g9MPV2bNE5faJz4M7
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Interference 
Reduction

Vocal(s)

Drums

Bass

Other

Vocal(s)

Drums

Bass

Other

Interfered recordings Clean Sources

Interference Reduction System



THE GOAL
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Interference 
Reduction

Mixture
MSS

Interfered Sources
(Vocal(s), Bass, Drums 

and Other)

Estimated Sources
(Vocal(s), Bass, Drums 

and Other)

Source Separated
(Vocal(s), Bass, Drums 

and Other)

for training

⋮ ⋮

⋮
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❖ Interference reduction: Special type of source separation

❖ Aim: Clean microphone recordings

Music Source Separation System

MSS System

Vocal(s)

Drums

Bass

Music
(Vocal(s), Bass, Drums and Other)

Other

Interference 
Reduction

Vocal(s)

Drums

Bass

Other

Vocal(s)

Drums

Bass

Other

Interfered recordings Clean Sources

Interference Reduction System
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❖ No neural network-based techniques proposed, due to dataset?

❖ DSP Algorithms: KAMIR  (Kernel Additive Modelling for Interference 
Reduction) - the state-of-the-art [2015]

1

❖ MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA  are the 
advancement of KAMIR

2

T. Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for interference reduction in multi-channel music recordings,” in 
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584–588

1

Di Carlo, Diego, Antoine Liutkus, and Ken Déguemel. "Interference reduction on full-length live recordings." 2018 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018

2
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❖ Learning free Optimisation Algorithm

❖ Convolutional Autoencoders (CAEs)

❖ Truncated UNet (t-UNet)

❖ Dilated full Wave-U-Net (dfUNet) with Graph Attentions
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❖ Each source has at least one dedicated 
microphones.

❖ At least a single source is dominant in 
its dedicated microphone.

https://images.app.goo.gl/g9MPV2bNE5faJz4M7
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Treating interference as a noise,

x(t) = s(t) + n(t)

System

Dominant Source

Other Sources (Modelled as noise)

Microphone recording
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Microphone 
Recordings

Estimated 
Sources
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❖ Poor generalisability

❖ Thus, for each source there should be dedicated trained CAEs

❖ Phase information issues
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Interfered Vocal(s)

Dominant Vocal(s)

bass in background

drums in background

Other in background

We 
have this 

information !!!
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s2(t)

sn(t)

•
•

+

λ1

λ2

λ3

•
•

s1(t)

Sources

x(t) = λ1s1(t) + λ2s2(t) + . . . + λnsn(t)

Observed Signal
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Microphone 
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Mixing
Matrix

Source
Signals

X = [x1(t), x2(t), . . . , xk(t)]T

S = [s1(t), s2(t), . . . , sn(t)]T

For k microphones and n sources,

Similarly for mixture signal, 

m(t) =
n

∑
i=0

βisi(t) = bTS
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❖  is an over-determined or over-constrained problemX = ΛS

❖ No unique solution, multiple solution exists

Equations:  and X = ΛS m = bTS
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Equations:  and X = ΛS m = bTS With guidance of
Dr. Siddhartha Sarma
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STEP
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STACK X ∈ ℝk×l

⋮

x(t) ∈ ℝl
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‣ Linear mixtures as per 

‣ MUSDB18HQ training set: Artificially bleeded with randomly generated 

‣ Diagonals of  are in range 0.6 to 1

‣ Off diagonals of  are in range 0 to 0.4

X = ΛS

Λ

Λ

Λ
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Average SDR across sources Time taken in seconds
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X = ΛS
True Λ Predicted Λ KAMIR Λ

Interference Matrix Λ
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❖ Linearity: Mixtures in real world follows non-linear mixing.

❖ High computation time.

❖ Basic model.
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❖ Why? 

❖ Datasets?

❖ Generalisability?

X = ΛS

Λ =

λ11 λ12 … λ1N

λ21 λ22 … λ2N
⋮ ⋮

λK1 λK2 … λKN

X =

x1(t)
x2(t)

⋮
xK(t)

S =

s1(t)
s2(t)

⋮
sN(t)
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❖ Why? 

❖ Datasets?

❖ Generalisability?

̂S = Λ†X

The interference reduced sources can be estimated by,

 Where  is the pseudo inverse of .† Λ

X = ΛS

Λ =

λ11 λ12 … λ1N

λ21 λ22 … λ2N
⋮ ⋮

λK1 λK2 … λKN

X =

x1(t)
x2(t)

⋮
xK(t)

S =

s1(t)
s2(t)

⋮
sN(t)
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X = ΛS
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https://images.app.goo.gl/65HCSCiKP55FfWVMAhttps://images.app.goo.gl/oMMMJN7VJ4inwNnq8

ACOUSTICALLY TREATED RANDOM ROOM



DATASET 2: FOR TESTING (REAL MIXTURES - CM)

35

‣ Stimulated artificial room using pyroomacoustics

‣ Dataset created with room impulse response, time delays, reverberations.

‣ Resembles more natural with live recordings. Same set of LM source set utilised

3

Scheibler, Robin, Eric Bezzam, and Ivan Dokmanić. "Pyroomacoustics: A python package for audio room simulation and array processing 
algorithms." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018.

3
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KAMIR

CAEs

t-UNet

MUSDB Linear Mixtures (LM)
MUSDBR Realistic Mixtures (CM)
MUSDBR-F LM finetuned with CM
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 Difference of Frobenius norm of the true Λ with the 
predicted .Λ̂Spectrograms of Vocal Source
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CONCLUSION OF THE APPROACHES
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❖ Proposed two neural networks for interference reduction: CAEs and t-UNet, 
both performing better than KAMIR

❖ CAEs has difficulties in generalising and works in TF domain where t-UNet 
reduces interference directly by learning interference matrix.

❖ t-UNet outperforms all the models in-terms of SDR and computationally 
faster



RE-DEFINING PROBLEM

40

s2(t)

sn(t)

•
•

λ1

λ2

λ3

••

s1(t)

x(t) = λ1s1(t) + λ2s2(t) + . . . + λnsn(t)
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❖ tUNet built with the mathematical approximation 
of the problem as  which is still linear!X = ΛS

❖ Initial evaluations of the live recordings reveals the 
t-UNet is not effective.

For k microphones and n sources,

Where , , and  are unknown 
functions

f( . ) g( . ) h( . )

s2(t)

sn(t)

•
•

λ1

λ2

λ3

••

s1(t)

x(t) = λ1s1(t) + λ2s2(t) + . . . + λnsn(t)
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‣ Treating each audio as a node

‣ Each vertices strength corresponds to the interference strength among recordings
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Linear Mixtures Realistic Mixtures



TEST ON LIVE RECORDINGS (OUT OF DOMAIN SAMPLES)
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Listening Test Results: 44 Participants

Interference Reduction Quality Audio Quality
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DILATED WAVE U NET WITH 
GRAPH ATTENTION

VIOLIN



MUSIC SOURCE SEPARATION FOR 
THE LIVE CARNATIC DATASET



TRAINING MSS: WAVE-U-NET MODEL
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Stoller, Daniel, Sebastian Ewert, and Simon Dixon. "Wave-u-net: A multi-scale neural network for end-to-end audio 
source separation." arXiv preprint arXiv:1806.03185 (2018).

Two models:

1. Trained with MUSDB18 dataset

2. Trained with Live recorded Saraga dataset



RESULTS FOR MUSDB18HQ & LIVE RECORDINGS
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Clean Interference CAE Cleaned t-UNet Cleaned

SDR 2.32 0.96 1.72 2.03

Wave-U-Net with MUSDB18HQ dataset,

Clean Interference 
(4 source)

Interference 
(4 source) dfUNet Cleaned

SDR NA -0.19 1.16 To be filled

Wave-U-Net with Sagraga dataset,



CONCLUSION
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‣ Proposed IR models improves MSS performance 

‣ Proposed IR models better than SOTA KAMIR in terms of SDR and Faster

KAMIR CAEs tUNet dfUNet
Average 1320.8 4.8 2.19 4.2

Table: Time taken in seconds for 200 test tracks of 10 seconds



FUTURE DIRECTIONS
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‣ Informed Source Separation: Build end-to-end IR-MSS systems.

‣ DSP Techniques for IR: Beamformers, Direction of Arrival Estimation, etc.



PUBLICATIONS
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❖ Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference Reduction in Multi-
Track Recordings," 2023 IEEE Workshop on Applications of Signal Processing to Audio and 
Acoustics (WASPAA), New Paltz, NY, USA, 2023, pp. 1-5.

❖ Rajesh R and Padmanabhan Rajan, “Interference reduction in live recordings” 
communicating to Transactions in Audio, Speech, and Language Processing (TASLP) 2024 
(under preparation)



MS BY RESEARCH | SYNOPSIS SEMINAR | 08 FEBRUARY 2024

THANKS FOR YOUR TIME AND ATTENTION


