

Rajesh R (S21005) - MS by Research

Interference Reduction in Music Source Separation for Live Recordings

Open Seminar | 27 October 2023

Guide: Dr. Padmanabhan Rajan School of Computing & Electrical Engineering, Indian Institute of Technology, Mandi

Music Source Separation

Music

Music production

https://www.seekpng.com/ima/u2q8r5y3e6y3r5u2/

Music Source Separation

Hard Problem?

Music Characteristics

Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.

The State-of-the-art

Western Pop Music MUSDB18

SOURCE TO DISTORTION RATIO

Recordings from Live Concerts

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

Violin

- * Live recordings lacks acoustic shielding
- * Microphone intended to pick specific source picks up the other sources as well

MSS vs Interference Reduction

- * Interference reduction: Special type of source separation
- * Aim: Clean microphone recordings

Overall Pipeline

Interference Reduction

Trends in Interference Reduction

- * No neural network-based techniques proposed, due to dataset?
- * DSP Algorithms: **KAMIR** (Kernel Additive Modelling for Interference Reduction) the state-of-the-art [2015]
- * MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA are the advancement of KAMIR

Contributions

- * Learning free Optimisation Algorithm
- * Convolutional Autoencoders (CAEs)
- * Truncated UNet (t-UNet)
- * Dilated full Wave-U-Net (dfUNet) with Graph Attentions

Assumptions

https://images.app.goo.gl/g9MPV2bNE5faJz4M7

- * Each source has at least one dedicated microphones.
- * At least a single source is dominant in its dedicated microphone.

Mathematical Formulation

Mathematical Formulation

For k microphones and n sources,

$$x_1(t) = \lambda_{11}s_1(t) + \lambda_{12}s_2(t) + \dots + \lambda_{1n}s_n(t)$$

$$x_2(t) = \lambda_{21} s_1(t) + \lambda_{22} s_2(t) + \dots + \lambda_{2n} s_n(t)$$

$$x_k(t) = \lambda_{k1} s_1(t) + \lambda_{k2} s_2(t) + \dots + \lambda_{kn} s_n(t)$$

$$X = \Lambda S$$
 \uparrow

Microphone Mixing So

Recordings

Mixing

Source

Matrix

Signals

$$X = [x_1(t), x_2(t), \dots, x_k(t)]^T$$

$$S = [s_1(t), s_2(t), \dots, s_n(t)]^T$$

Similarly for mixture signal,

$$m(t) = \sum_{i=0}^{n} \beta_i s_i(t) = b^T S$$

Issues with the problem

Equations: $X = \Lambda S$ and $m = b^T S$

- * $X = \Lambda S$ is an over-determined or over-constrained problem
- * No unique solution, multiple solution exists

Optimisation Approach

Equations: $X = \Lambda S$ and $m = b^T S$

Problem statement: minimise $||X - \Lambda S||^2 + ||m - b||$ subject to constraints:

1.
$$\Lambda \neq I$$

2.
$$\lambda_{ii} > \lambda_{ij}$$

3.
$$\gamma_1 \leq \lambda_{ij} \leq \gamma_2, \forall i \neq j$$

With guidance of

Dr. Siddhartha Sarma

Alternate Minimisation Solution

- · Non convex problem, global minima does not exist
- Alternate minimisation approach
- Derived the update rule for Λ , S and b.

Update Rules:

$$\Lambda = (XSS^T)(SS^T + \eta I)^{-1}$$

$$S = (\Lambda^T \Lambda + bb^T)^{-1}(bm + \Lambda^T X)$$

$$b = (SS^T + \eta I)^{-1}(Sm^T)$$

Algorithm 1 Time-domain Optimization Algorithm for Bleed Reduction

- 1: Inputs: $X \in \mathbb{R}^{k \times l}$ and $m \in \mathbb{R}^{l}$
- 2: Initialize: $\Lambda \leftarrow I$
- 3: Initialize: $S \leftarrow X$
- 4: Initialize: $b \leftarrow [1, 1, ...1]^T \in \mathbb{R}^l$
- 5: while $||X \Lambda S||^2 + ||m b^T S||^2 \ge \epsilon \, do$
- 6: $\Lambda \leftarrow (XSS^T)(SS^T + \eta I)^{-1}$
- 7: $\Lambda \leftarrow projection(\Lambda)$
- 8: $S \leftarrow (\Lambda^T \Lambda + bb^T)^{-1}(bm + \Lambda^T X)$
- 9: $b \leftarrow (SS^T + \eta I)^{-1}(Sm^T)$
- 10: end while

A update rule

⊳ S update rule

▷ b update rule

Overall Procedure

Fig. 3. SDR, time taken and the difference 12 norm is compared with ICA and KAMIR

Interference Matrix A

Shortcomings of the approach

- * Linearity: Mixtures in real world follows non-linear mixing.
- * High computation time.

Learning based Interference Reduction

- * Why?
- * Datasets?
- * Generalisability?

Interference as Noise

Treating interference as a noise,

$$x(t) = s(t) + n(t)$$

Dominant Source

Convolutional Autoencoder (CAE)

CAE Limitations

- * Poor generalisability
- * Thus, for each source there should be dedicated trained CAEs
- * Phase information issues

Hidden Information

Interference Learning based Reduction

In general, let $X \in \mathbb{R}^{K \times L}$ be the time-aligned received by the K microphones corresponding to an audio of length L.

let $X \in \mathbb{R}^{K \times L}$ be the true sources, then the relationship between X and S can be modelled as,

$$X = \Lambda S$$

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1N} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2N} \\ \vdots & & \vdots & \\ \lambda_{K1} & \lambda_{K2} & \dots & \lambda_{KN} \end{pmatrix} \quad X = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_K(t) \end{pmatrix} \quad S = \begin{pmatrix} s_1(t) \\ s_2(t) \\ \vdots \\ s_N(t) \end{pmatrix}$$

Interference Learning based Reduction

The interference reduced sources can be estimated by,

$$\hat{S} = \Lambda^{\dagger} X$$

Where \dagger is the pseudo inverse of Λ .

t-UNet Architecture

Datasets

- * Artificially created the bleeding with MUSDB18HQ¹ dataset
- * MUSDB: Linear Mixtures Mixup the stem within the track using randomly generated interference matrix Λ
- * MUSDBR: Convolute Mixtures: Introducing room impulse responses and time delays using pyroomacoustics²

¹Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis and R. Bittner, "Musdb18-HQ - an uncompressed version of MUSDB18," Aug. 2019. [online] Available: https://doi.org/10.5281/zenodo.3338373.

²R. Scheibler, E. Bezzam, and I. Dokmani'c, "Pyroomacoustics: A python package for audio room simulation and array processing algorithms," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, 2018, pp. 351–355.

Fig: SDR for the proposed models compared with KAMIR³ under linear mixtures dataset

³T. Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, "Kernel additive modeling for interference reduction in multi-channel music recordings," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584–588

Fig: Average SDR for the proposed models with convolute mixtures under matched and mismatched case

KAMIR, CAE, and t-UNet are represented in Red, Yellow, and Magenta respectively. Suffix F represents models fine-tuned with MUSDBR

Fig: Difference of Frobenius norm of the true Λ with the predicted $\hat{\Lambda}$.

MSS Performance

On Wave-U-Net with MUSDB18HQ dataset,

	Clean	Interference	CAE Cleaned	t-UNet Cleaned
SDR	2.32	0.96	1.72	2.03

Table: Music Source Separation Performance

Computational Complexity:

	KAMIR	CAEs	tUNet
Average	660.4	2.4	2.19

Table: Time taken in seconds for 100 test tracks

Conclusion of CAEs & t-UNet

- * Proposed two neural networks for interference reduction: CAEs and t-UNet, both performing better than KAMIR
- * CAEs has difficulties in generalising and works in TF domain where t-UNet reduces interference directly by learning interference matrix.
- * t-UNet outperforms all the models in-terms of SDR and computationally faster
- * Interference reduction improves the source separation performance

Disadvantages

- * tUNet built with the mathematical approximation of the problem as $X = \Lambda S$ which is still **linear!**
- * Initial evaluations of the live recordings reveals the t-UNet is not effective.

Acoustic Treated vs Normal Room

https://images.app.goo.gl/oMMMJN7VJ4inwNnq8

https://images.app.goo.gl/65HCSCiKP55FfWVMA

Extending the problem to Non-linearity

For k microphones and n sources,

$$x_1(t) = f(s_1(t), s_2(t), \dots, s_n(t))$$

 $x_2(t) = g(s_1(t), s_2(t), \dots, s_n(t))$
 \vdots
 $x_k(t) = h(s_1(t), s_2(t), \dots, s_n(t))$

Where f(.), g(.), and h(.) are some unknown functions

Dilated Wave-U-Net with Graph Attention

Testing on live recordings

- * The Saraga Dataset: Vocal(s), mridangam, and violin
- * Extending to out-of-domain samples thru post processing

Future work

Publications

* Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference Reduction in Multi-Track Recordings," 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2023, pp. 1-5.

"Thank you all for your time and attention"