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* Microphone intended to pick specific
source picks up the other sources as well



MSS vs Interference Reduction

* Interference reduction: Special type of source separation

* Aim: Clean microphone recordings
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Interference Reduction



Trends in Interference Reduction

* No neural network-based techniques proposed, due to dataset?

* DSP Algorithms: KAMIR (Kernel Additive Modelling for Interference
Reduction) - the state-of-the-art [2015]

* MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA are the
advancement of KAMIR
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Contributions

* Learning free Optimisation Algorithm

* Convolutional Autoencoders (CAEs)

“ Truncated UNet (t-UNet)

# Dilated full Wave-U-Net (dfUNet) with Graph Attentions
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Assumptions

Each source has at least one dedicated
microphones.

At least a single source is dominant in
its dedicated microphone.

https:/ /images.app.goo.gl/ g9IMPV2bNE5fa]z4M7
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Mathemaucal Formulation

For k microphones and n sources,
X1(1) = Ap181(8) + A128,(8) + .. + 4,,5,(¢)

XZ(t) — /121S1(t) —+ /122S2(t) Si= T = ﬂznsn(t)

xk(t) — /Iklsl(t) + /1k2S2(t) =T /Iknsn(t)

X=AS
= G

Microphone Mixing Source
Recordings Matrix Signals
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X=lr . oth - sl

S = [s;(), $,®), ..., 5,01

Similarly for mixture signal,

m)= ¥ Bs)=b"S
1=0




Issues with the problem

Equations: X = ASand m = b'S

+» X = AS is an over-determined or over-constrained problem

* No unique solution, multiple solution exists
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Equations: X = ASand m = b'S

Problem statement: minimise || X — AS||>+ ||[m—bC = 0
subject to constraints:

1. A#1
2. Ay > Ay

3. NS4SV ViF]
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Alternate Minimisation Solution

* Non convex problem, global minima does not exist
» Alternate minimisation approach

e Derived the update rule for A, S and b.

A = (XSSTY(SST + nI)™!
S = (ATA + bb")"\(bm + ATX)
b = (SST + nl)~'(SmT)
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Algorithm

Algorithm 1 Time-domain Optimization Algorithm for Bleed Reduction

I: Inputs: X € R**! and m € R’

2: Initialize: A «+ I

3: Initialize: S + X

4: Initialize: b « [1,1,...1]7 € R

5: while || X — AS||* + ||m — b" S||* > edo

6: A+ (XSST)(SST +qI)~! > A update rule
‘7.

8

9

0:

A « projection(A)
S — (A"A+ ") (bm + AT X) > S update rule
b (SS* +nI)"'(Sm") > b update rule

10: end while
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Overall Procedure
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Results
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Results

X = A5
True A Predicted A KAMIR A

0.098 0.099  0.099

(fe7am 0.101 ¢ 0.1 0.12

0.122 paRiram 0.11 | 0.173

0.094 | 0.098

0.094 | 0.098 0.099 0.127 | 0.097 | 0.104 WX

Interference Matrix A
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Shortcomings of the approach

* Linearity: Mixtures in real world follows non-linear mixing.

* High computation time.

24



* Why?
+ Datasets?

* Generalisability?
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Treating interference as a noise,

x(t) = s(t) + n(r)

Dominant Source

At

Other Sources (Modelled as noise)

k-

Mzcrophone recording
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CAE Limitations

* Poor generalisability
* Thus, for each source there should be dedicated trained CAEs

+ Phase information issues
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T

Interference Learning based Reduction ™=

In general, let X € R*** be the time-aligned received by the K microphones
corresponding to an audio of length L.

let X € R**" be the true sources, then the relationship between X and S can
be modelled as,

X=AS

Aip A e Ay X1 (2) 51(2)

e X (1) sy()

30



Interference Learning based Reduction =

The interference reduced sources can be estimated by,

S =AtX

Where T is the pseudo inverse of A.
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Datasets

+ Artificially created the bleeding with MUSDB18HQ' dataset

« MUSDB: Linear Mixtures - Mixup the stem within the track using randomly
generated interference matrix A

* MUSDBR: Convolute Mixtures: Introducing room impulse responses and time
delays using pyroomacoustics”

7 Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis and R. Bittner, “Musdb18-HQ - an uncompressed version of MUSDB18,” Aug. 2019. [online]
Available: https://doi.org/10.5281/zenodo.3338373.

°R. Scheibler, E. Bezzam, and I. Dokmani’c, “Pyroomacoustics: A python package for audio room simulation and array processing algorithms,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, 2018, pp. 351-355.
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Fig: SDR for the proposed models compared with KAMIR® under linear mixtures dataset

3T, Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for interference reduction in multi-channel music recordings,” in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584-588
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MUSDB MUSDBR MUSDB MUSDBR MUSDBR-F MUSDB MUSDBR MUSDBR-F

Fig: Average SDR for the proposed models with convolute mixtures under matched
and mismatched case
KAMIR, CAE, and t-UNet are represented in Red, Yellow, and Magenta respectively.
Suffix F represents models fine-tuned with MUSDBR

35



4096 -
2048 A

1024 =~
N ‘ -

+40 dB

+35 dB

+30 dB

+25 dB

+20 dB

- +15 dB

- +10 dB

- +5 dB

36




Results

—
™~

-
N

-
o

—
o

o
o

O
~

Difference Forbenius Norm

o
N

-
KAMIR CAE t-UNet

Fig: Difference of Frobenius norm of the true A with the predicted A.

507k



MSS Performance

On Wave-U-Net with MUSDB18HQ dataset,

Clean Interference CAE Cleaned t-UNet Cleaned
SDR 23 0.96 72 2.03

Table: Music Source Separation Performance

Computational Complexity:

KAMIR CAEs tUNet
Average 660.4 2.4 2+

Table: Time taken in seconds for 100 test tracks
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Conclusion of CAEs & t-UNet

* Proposed two neural networks for interterence reduction: CAEs and t-UNet,
both performing better than KAMIR

* CAEs has difficulties in generalising and works in TF domain where t-UNet
reduces interference directly by learning interference matrix.

* t-UNet outperforms all the models in-terms of SDR and computationally faster

* Interference reduction improves the source separation performance
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+ tUNet built with the mathematical approximation of the problem as X = AS
which is still linear!

* Initial evaluations of the live recordings reveals the t-UNet is not effective.
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Extending the problem to Non-linearity =

For k microphones and n sources,

xl(t) == f(sl(t)a s2(t),- - -, S’n(t))
.’l?g(t) = Q(Sl(t), Sz(t) ...... S n(t))
xr(t) = h(s1(t), s2(t), ..., Sn(t))

Where f(.), g(.), and A( . ) are some unknown functions
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T'esting on live recordings

* The Saraga Dataset: Vocal(s), mridangam, and violin

* Extending to out-of-domain samples thru post processing

Bleeded Vocal Estimated Vocal
~lfoiin— I il
. ol nterference il . .
Bleeded Mridangam ; . ; Estimated Mridangam
: Reduction :
i~ ~lwoin—
Bleeded Violin Estimated Violin

Interfered Sources Estimated Sources
(Vocal(s), Mridangam, (Vocal(s), Mridangam,
Violin) Violin)
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Future work
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Publications

* Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference
Reduction in Multi-Track Recordings," 2023 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2023,

pp. 1-5.



“Thank you all for your time and attention”



