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Music Source Separation



Music

• Music production

https://www.seekpng.com/ima/u2q8r5y3e6y3r5u2/

Mixing
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Music Source Separation
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Hard Problem?
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Music Characteristics
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Figure taken from: Estefania Cano, Derry Fitzgerald, Antoine Liutkus, Mark Plumbley, Fabian-Robert Stöter. Musical Source 
Separation: An Introduction. IEEE Signal Processing Magazine, Institute of Electrical and Electronics Engineers, 2019, 36 (1), pp.31-40.



The State-of-the-art
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Recordings from Live Concerts
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❖ Live recordings lacks acoustic shielding

❖ Microphone intended to pick specific 
source picks up the other sources as wellhttps://images.app.goo.gl/g9MPV2bNE5faJz4M7

Violin
VocalMridangam



MSS vs Interference Reduction
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❖ Interference reduction: Special type of source separation

❖ Aim: Clean microphone recordings
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Overall Pipeline
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Interference Reduction



Trends in Interference Reduction

❖ No neural network-based techniques proposed, due to dataset?

❖ DSP Algorithms: KAMIR (Kernel Additive Modelling for Interference 
Reduction) - the state-of-the-art [2015]

❖ MIRA (Multitrack Interference Reduction Algorithm) & FastMIRA are the 
advancement of KAMIR
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Contributions

❖ Learning free Optimisation Algorithm

❖ Convolutional Autoencoders (CAEs)

❖ Truncated UNet (t-UNet)

❖ Dilated full Wave-U-Net (dfUNet) with Graph Attentions
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Assumptions
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❖ Each source has at least one dedicated 
microphones.

❖ At least a single source is dominant in 
its dedicated microphone.

https://images.app.goo.gl/g9MPV2bNE5faJz4M7



Mathematical Formulation
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Mathematical Formulation
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X = ΛS

x1(t) = λ11s1(t) + λ12s2(t) + . . + λ1nsn(t)

x2(t) = λ21s1(t) + λ22s2(t) + . . + λ2nsn(t)

xk(t) = λk1s1(t) + λk2s2(t) + . . + λknsn(t)

•

•

Microphone 
Recordings

Mixing
Matrix

Source
Signals

X = [x1(t), x2(t), . . . , xk(t)]T

S = [s1(t), s2(t), . . . , sn(t)]T

For k microphones and n sources,

Similarly for mixture signal, 

m(t) =
n

∑
i=0

βisi(t) = bTS



Issues with the problem

❖  is an over-determined or over-constrained problem

❖ No unique solution, multiple solution exists

X = ΛS
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Equations:  and X = ΛS m = bTS



Optimisation Approach

Problem statement: minimise  with respect to ,  and  
subject to constraints:

1.

2.

3.

∥X − ΛS∥2 + ∥m − bTS∥2 Λ S b

Λ ≠ I

λii > λij

γ1 ≤ λij ≤ γ2, ∀i ≠ j
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Equations:  and X = ΛS m = bTS With guidance of
Dr. Siddhartha Sarma



Alternate Minimisation Solution
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• Non convex problem, global minima does not exist

• Alternate minimisation approach

• Derived the update rule for ,  and .Λ S b

Update Rules:

Λ = (XSST)(SST + ηI)−1

S = (ΛTΛ + bbT)−1(bm + ΛT X)

b = (SST + ηI)−1(SmT)



Algorithm
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Overall Procedure
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Results
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Results
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X = ΛS
True Λ Predicted Λ KAMIR Λ

Interference Matrix Λ



Shortcomings of the approach

❖ Linearity: Mixtures in real world follows non-linear mixing.

❖ High computation time.
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Learning based Interference Reduction

❖ Why? 

❖ Datasets?

❖ Generalisability?
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Interference as Noise
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Treating interference as a noise,

x(t) = s(t) + n(t)

Dominant Source

Other Sources (Modelled as noise)

Microphone recording

System



Convolutional Autoencoder (CAE)
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CAE Limitations
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❖ Poor generalisability

❖ Thus, for each source there should be dedicated trained CAEs

❖ Phase information issues



Hidden Information

29

Interfered Vocal(s)
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Interference Learning based Reduction
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X = ΛS

In general, let  be the time-aligned received by the  microphones 
corresponding to an audio of length .

X ∈ ℝK×L K
L

let  be the true sources, then the relationship between  and  can 
be modelled as,

X ∈ ℝK×L X S

Λ =

λ11 λ12 … λ1N

λ21 λ22 … λ2N
⋮ ⋮

λK1 λK2 … λKN

X =

x1(t)
x2(t)

⋮
xK(t)

S =

s1(t)
s2(t)

⋮
sN(t)



Interference Learning based Reduction
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̂S = Λ†X

The interference reduced sources can be estimated by,

 Where  is the pseudo inverse of .† Λ



t-UNet Architecture
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X = ΛS



Datasets
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❖ Artificially created the bleeding with MUSDB18HQ  dataset

❖ MUSDB: Linear Mixtures - Mixup the stem within the track using randomly 
generated interference matrix 

❖ MUSDBR: Convolute Mixtures: Introducing room impulse responses and time 
delays using pyroomacoustics

1

Λ

2

R. Scheibler, E. Bezzam, and I. Dokmani ́c, “Pyroomacoustics: A python package for audio room simulation and array processing algorithms,” in 2018 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, 2018, pp. 351–355.

2

Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis and R. Bittner, “Musdb18-HQ - an uncompressed version of MUSDB18,” Aug. 2019. [online] 
Available: https://doi.org/10.5281/zenodo.3338373.
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Results
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Fig: SDR for the proposed models compared with KAMIR  under linear mixtures dataset3

T. Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for interference reduction in multi-channel music recordings,” in 
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584–588

3

LINEAR 
MIXTURES



Results
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Fig: Average SDR for the proposed models with convolute mixtures under matched 
and mismatched case  

KAMIR, CAE, and t-UNet are represented in Red, Yellow, and Magenta respectively. 
Suffix F represents models fine-tuned with MUSDBR

CONVOLUTE 
MIXTURES



Results
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Results
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Fig: Difference of Frobenius norm of the true Λ with the predicted .Λ̂



MSS Performance
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Clean Interference CAE Cleaned t-UNet Cleaned

SDR 2.32 0.96 1.72 2.03

On Wave-U-Net with MUSDB18HQ dataset,

Table: Music Source Separation Performance

KAMIR CAEs tUNet
Average 660.4 2.4 2.19

Table: Time taken in seconds for 100 test tracks

Computational Complexity:



Conclusion of CAEs & t-UNet
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❖ Proposed two neural networks for interference reduction: CAEs and t-UNet, 
both performing better than KAMIR

❖ CAEs has difficulties in generalising and works in TF domain where t-UNet 
reduces interference directly by learning interference matrix.

❖ t-UNet outperforms all the models in-terms of SDR and computationally faster

❖ Interference reduction improves the source separation performance



Disadvantages

❖ tUNet built with the mathematical approximation of the problem as  
which is still linear!

❖ Initial evaluations of the live recordings reveals the t-UNet is not effective.

X = ΛS
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Acoustic Treated vs Normal Room
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https://images.app.goo.gl/65HCSCiKP55FfWVMAhttps://images.app.goo.gl/oMMMJN7VJ4inwNnq8



Extending the problem to Non-linearity
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For k microphones and n sources,

Where , , and  are some unknown functionsf( . ) g( . ) h( . )



Dilated Wave-U-Net with Graph Attentions
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Testing on live recordings

❖ The Saraga Dataset: Vocal(s), mridangam, and violin

❖ Extending to out-of-domain samples thru post processing
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Future work
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Publications

❖ Rajesh R and Padmanabhan Rajan, "Neural Networks for Interference 
Reduction in Multi-Track Recordings," 2023 IEEE Workshop on Applications of 
Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2023, 
pp. 1-5.



“Thank you all for your time and attention” 


