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Interference Effects
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❖ Live recordings lacks acoustic 
shielding

❖ Microphone intended to pick 
specific source picks up the other 
sources as well
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Assumptions
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❖ Each source has at least one dedicated microphones.

❖ At least a single source is dominant in its dedicated microphone.



Interference as Noise
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Treating interference as a noise,

x(t) = s(t) + n(t)
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Convolutional Autoencoder (CAE)
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CAE Limitations
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❖ Poor generalisability

❖ Thus, for each source there should be dedicated trained CAEs

❖ Phase information issues



Interference Reduction is MSS
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❖ Interference reduction problem is a special type of source separation

❖ We have interfered sources and the goal is to clean them
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Interference Reduction is MSS

9 Rajesh R
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We 
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Interference Learning based Reduction
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xk(t) = λk1s1(t) + λk2s2(t) + … + λkNsN(t)

Let us have  microphones capturing  sources,K N

 represents gain of the acoustic path from  source to  microphoneλkn nth kth

 represents gain of the  true sourcesn(t) nth



Interference Learning based Reduction
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X = ΛS

In general, let  be the time-aligned received by the  microphones 
corresponding to an audio of length .

X ∈ ℝK×L K
L

let  be the true sources, then the relationship between  and  can 
be modelled as,

X ∈ ℝK×L X S

Λ =

λ11 λ12 … λ1N

λ21 λ22 … λ2N
⋮ ⋮

λK1 λK2 … λKN

X =

x1(t)
x2(t)

⋮
xK(t)

S =

s1(t)
s2(t)

⋮
sN(t)



Interference Learning based Reduction
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̂S = Λ†X

The interference reduced sources can be estimated by,

 Where  is the pseudo inverse of .† Λ



t-UNet Architecture
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Datasets
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❖ Artificially created the bleeding with MUSDB18HQ  dataset

❖ MUSDB: Linear Mixtures - Mixup the stem within the track using randomly 
generated interference matrix 

❖ MUSDBR: Convolute Mixtures: Introducing room impulse responses and time 
delays using pyroomacoustics

1

Λ

2

R. Scheibler, E. Bezzam, and I. Dokmani ́c, “Pyroomacoustics: A python package for audio room simulation 
and array processing algorithms,” in 2018 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) IEEE, 2018, pp. 351–355.

2

Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis and R. Bittner, “Musdb18-HQ - an uncompressed version of 
MUSDB18,” Aug. 2019. [online] Available: https://doi.org/10.5281/zenodo.3338373.

1



Results
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Fig: SDR for the proposed models compared 
with KAMIR  under linear mixtures dataset 

on high and low interference conditions.

a) Reference SDR, (b) KAMIR, (c) CAE, and 
(d) t-UNet
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Results
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Fig: Average SDR for the proposed models with convolute mixtures under matched 
and mismatched case  

KAMIR, CAE, and t-UNet represented in Red, Yellow, and Magenta respectively. 
Suffix F represents models fine-tuned with MUSDBR



Results
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Fig: Spectrogram for a specific vocal 
source. From top left clockwise: vocal with 
interference from bass, drums and others; 
KAMIR prediction; CAE prediction; and t-

UNet prediction.



Results
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Fig: Difference of Frobenius norm of the true Λ with the predicted .Λ̂



MSS Performance

19 Rajesh R

Clean Interference CAE Cleaned t-UNet Cleaned

SDR 2.32 0.96 1.72 2.03

On Wave-U-Net with MUSDB18HQ dataset,

Table: Music Source Separation Performance

KAMIR CAEs tUNet
Average 660.4 2.4 2.19

Table: Time taken in seconds for 100 test tracks

Computational Complexity:



Conclusion
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❖ Proposed two neural networks for interference reduction: CAEs and t-UNet, 
both performing better than KAMIR

❖ CAEs has difficulties in generalising and works in TF domain where t-UNet 
reduces interference directly by learning interference matrix.

❖ t-UNet outperforms all the models in-terms of SDR and computationally faster

❖ Interference reduction improves the source separation performance



“Thanks for your attention” 


