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* Live recordings lacks acoustic

shielding

* Microphone intended to pick
specific source picks up the other
sources as well
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Assumptions

* Each source has at least one dedicated microphones.

“ At least a single source is dominant in its dedicated microphone.
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Interference as Noise

Treating interference as a noise,

x(t) = s(t) + n(r)

Dominant Source

Mzcrophone recording

Other Sources (Modelled as noise)
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Convolutional Autoencoder (CAE) =
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Conv2D(32, (2, 1))
Batch Normalisation
Conv2D(64, (2, 1))
Batch Normalisation
Conv2DTranspose(32, (2, 1))
Batch Normalisation
Batch Normalisation

Conv2DTranspose(1, (2, 1))
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Interference Spectra

Estimated Spectra
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CAE Limitations

* Poor generalisability
* Thus, for each source there should be dedicated trained CAEs

+ Phase information issues
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Interterence Reduction 1s MSS

* Interterence reduction problem is a special type of source separation

* We have interfered sources and the goal is to clean them
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Interterence Reduction 1s MSS

Dominant Vocal(s)

V We
"\M/W\WMVV\A” é bass in background have this

information !!!

Interfered Vocal(s) Ul UWV I

WW” Other in background

drums in background

9 Rajesh R



TS

(“

Interference Learning based Reduction =

Let us have K microphones capturing N sources,
xk(t) — /lklsl(t) I /1k2S2(t) SR /’{kNSN(t)

A, represents gain of the acoustic path from n™ source to k" microphone

s, (¢) represents gain of the n” true source
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Interference Learning based Reduction =

In general, let X € R*** be the time-aligned received by the K microphones
corresponding to an audio of length L.

let X € R**" be the true sources, then the relationship between X and S can
be modelled as,

A A - Ay X1 (2) 51(0)
N R Sy ' I ECT I RO

At Axo  --o Agw X (1) sa(?)
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Interference Learning based Reduction =

The interference reduced sources can be estimated by,

S =AtX

Where T is the pseudo inverse of A.
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Datasets

+ Artificially created the bleeding with MUSDB18HQ' dataset

« MUSDB: Linear Mixtures - Mixup the stem within the track using randomly
generated interference matrix A

* MUSDBR: Convolute Mixtures: Introducing room impulse responses and time
delays using pyroomacoustics”

7 Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis and R. Bittner, “Musdb18-HQ - an uncompressed version of

MUSDB18,” Aug. 2019. [online] Available: https://doi.org/10.5281/zenodo.3338373.
°R. Scheibler, E. Bezzam, and I. Dokmani’c, “Pyroomacoustics: A python package for audio room simulation

and array processing algorithms,” in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) IEEE, 2018, pp. 351-355.
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Results
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2: **-4: +'|'$* -|-*-4=.|. *-l--l-*

Vocal Bass Drums Other

.

SDR

Fig: SDR for the proposed models compared
with KAMIR? under linear mixtures dataset

Low Interference

on high and low interference conditions.

a) Reference SDR, (b) KAMIR, (c) CAE, and
(d) t-UNet

SDR
High Interference

@ N o I © Cy

3T, Pratzlich, R. M. Bittner, A. Liutkus, and M. Muller, “Kernel additive modeling for
interference reduction in multi-channel music recordings,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 584-588

15 Rajesh R



20

MUSDB MUSDBR MUSDB MUSDBR MUSDBR-F MUSDB MUSDBR MUSDBR-F

Fig: Average SDR for the proposed models with convolute mixtures under matched
and mismatched case

KAMIR, CAE, and t-UNet represented in Red, Yellow, and Magenta respectively.
Suffix F represents models fine-tuned with MUSDBR
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Results
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Results
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Fig: Difference of Frobenius norm of the true A with the predicted A.
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MSS Performance

On Wave-U-Net with MUSDB18HQ dataset,

Clean Interference CAE Cleaned t-UNet Cleaned
SDR 23 0.96 7 2.03

Table: Music Source Separation Performance

Computational Complexity:

KAMIR CAEs tUNet
Average 660.4 2.4 23

Table: Time taken in seconds for 100 test tracks
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Conclusion

* Proposed two neural networks for interterence reduction: CAEs and t-UNet,
both performing better than KAMIR

* CAEs has difficulties in generalising and works in TF domain where t-UNet
reduces interference directly by learning interference matrix.

* t-UNet outperforms all the models in-terms of SDR and computationally faster

* Interference reduction improves the source separation performance
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“Thanks for your attention”



